Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stochastically generated instantaneous velocity profiles are used to reproduce the outer region of rough-wall turbulent boundary layers in a range of Reynolds numbers extending from the wind tunnel to field conditions. Each profile consists in a sequence of steps, defined by the modal velocities and representing uniform momentum zones (UMZs), separated by velocity jumps representing the internal shear layers. Height-dependent UMZ is described by a minimal set of attributes: thickness, mid-height elevation, and streamwise (modal) and vertical velocities. These are informed by experimental observations and reproducing the statistical behaviour of rough-wall turbulence and attached eddy scaling, consistent with the corresponding experimental datasets. Sets of independently generated profiles are reorganized in the streamwise direction to form a spatially consistent modal velocity field, starting from any randomly selected profile. The operation allows one to stretch or compress the velocity field in space, increases the size of the domain and adjusts the size of the largest emerging structures to the Reynolds number of the simulated flow. By imposing the autocorrelation function of the modal velocity field to be anchored on the experimental measurements, we obtain a physically based spatial resolution, which is employed in the computation of the velocity spectrum, and second-order structure functions. The results reproduce the Kolmogorov inertial range extending from the UMZ and their attached-eddy vertical organization to the very-large-scale motions (VLSMs) introduced with the reordering process. The dynamic role of VLSM is confirmed in the$$-u^{\prime }w^{\prime }$$co-spectra and in their vertical derivative, representing a scale-dependent pressure gradient contribution.more » « lessFree, publicly-accessible full text available November 25, 2025
-
Abstract Understanding the organization and dynamics of turbulence structures in the atmospheric surface layer (ASL) is important for fundamental and applied research in different fields, including weather prediction, snow settling, particle and pollutant transport, and wind energy. The main challenges associated with probing and modeling turbulence in the ASL are: i) the broad range of turbulent scales associated with the different eddies present in high Reynolds-number boundary layers ranging from the viscous scale (đȘ(mm)) up to large energy-containing structures (đȘ(km)); ii) the non-stationarity of the wind conditions and the variability associated with the daily cycle of the atmospheric stability; iii) the interactions among eddies of different sizes populating different layers of the ASL, which contribute to momentum, energy, and scalar turbulent fluxes. Creative and innovative measurement techniques are required to probe near-surface turbulence by generating spatio-temporally-resolved data in the proximity of the ground and, at the same time, covering the entire ASL height with large enough streamwise extent to characterize the dynamics of larger eddies evolving aloft. To this aim, the U.S. National Science Foundation sponsored the development of the Grand-scale Atmospheric Imaging Apparatus (GAIA) enabling super-large snow particle image velocimetry (SLPIV) in the near-surface region of the ASL. This inaugural version of GAIA provides a comprehensive measuring system by coupling SLPIV and two scanning Doppler LiDARs to probe the ASL at an unprecedented resolution. A field campaign performed in 2021â2022 and its preliminary results are presented herein elucidating new research opportunities enabled by the GAIA measuring system.more » « less
-
Recent works on wall-bounded flows have corroborated the coexistence of wall-attached eddies, whose statistical features are predicted through Townsend's attached-eddy hypothesis (AEH), and very-large-scale motions (VLSMs). Furthermore, it has been shown that the presence of wall-attached eddies within the logarithmic layer is linked to the appearance of an inverse-power-law region in the streamwise velocity energy spectra, upon significant separation between outer and viscous scales. In this work, a near-neutral atmospheric surface layer is probed with wind light detection and ranging to investigate the contributions to the streamwise velocity energy associated with wall-attached eddies and VLSMs for a very-high-Reynolds-number boundary layer. Energy and linear coherence spectra (LCS) of the streamwise velocity are interrogated to identify the spectral boundaries associated with eddies of different typologies. Inspired by the AEH, an analytical model for the LCS associated with wall-attached eddies is formulated. The experimental results show that the identification of the wall-attached-eddy energy contribution through the analysis of the energy spectra leads to an underestimate of the associated spectral range, maximum height attained and turbulence intensity. This feature is due to the overlap of the energy associated with VLSMs obscuring the inverse-power-law region. The LCS analysis estimates wall-attached eddies with a streamwise/wall-normal ratio of about 14.3 attaining a height of about 30 % of the outer scale of turbulence.more » « less
-
Abstract A field experiment was conducted to investigate the effects of the thrust force induced by utility-scale wind turbines on the incoming wind field. Five wind profiling LiDARs and a scanning Doppler pulsed wind LiDAR were deployed in the proximity of a row of four wind turbines located over relatively flat terrain, both before and after the construction of the wind farm. The analysis of the LiDAR data collected during the pre-construction phase enables quantifying the wind map of the site, which is then leveraged to correct the post-construction LiDAR data and isolate rotor-induced effects on the incoming wind field. The analysis of the profiling LiDAR data allows for the identification of the induction zone upstream of the turbine rotors, with an increasing velocity deficit moving from the top tip towards the bottom tip of the rotor. The largest wind speed reduction (about 5%) is observed for convective conditions and incoming hub-height wind speed between cut-in and rated wind speeds. The scanning LiDAR data indicate the presence of speedup regions within the gaps between adjacent turbine rotors. Speedup increases with reducing the transverse distance between the rotors, atmospheric instability (maximum 15%), while a longer streamwise extent of the speedup region is observed under stable atmospheric conditions.more » « less
-
Summary Over the last decades, pulsed light detection and ranging (LiDAR) anemometry has gained growing attention in probing the marine atmospheric boundary layer (MABL) due to its ease of use combined with compelling spatioâtemporal resolution. Among several scanning strategies, fixed scans represent the most prominent choice when highâfrequency resolution is required; however, no information is provided about the spatial heterogeneity of the wind field. On the other hand, volumetric scans allow for the characterization of the spatial variability of the wind field with much lower temporal resolution than fixed scans. In this work, the recently developed âLiDAR Statistical Barnes Objective Analysisâ (LiSBOA) algorithm for the optimal design of LiDAR scans and retrieval of wind velocity statistics is tailored for applications in the MABL. The LiDAR data, collected during a recent experimental campaign over Lake Lavon in Texas, show a good consistency of mean velocity profiles between fixed and LiSBOAâinterpolated volumetric data, thus further encouraging the use of coupled fixed and volumetric scans for simultaneous characterizations of wind turbulence statistics along the vertical direction and volumetric heterogeneity of the wind field.more » « less
-
null (Ed.)Continuous advancements in LiDAR technology have enabled compelling wind turbulence measurements within the atmospheric boundary layer with range gates shorter than 20 m and sampling frequency of the order of 10 Hz. However, estimates of the radial velocity from the back-scattered laser beam are inevitably affected by an averaging process within each range gate, generally modeled as a convolution between the actual velocity projected along the LiDAR line-of-sight and a weighting function representing the energy distribution of the laser pulse along the range gate. As a result, the spectral energy of the turbulent velocity fluctuations is damped within the inertial sub-range with respective reduction of the velocity variance, and, thus, not allowing to take advantage of the achieved spatio-temporal resolution of the LiDAR technology. In this article, we propose to correct this turbulent energy damping on the LiDAR measurements by reversing the effect of a low-pass filter, which can be estimated directly from the LiDAR measurements. LiDAR data acquired from three different field campaigns are analyzed to describe the proposed technique, investigate the variability of the filter parameters and, for one dataset, assess the procedure for spectral LiDAR correction against sonic anemometer data. It is found that the order of the low-pass filter used for modeling the energy damping on the LiDAR velocity measurements has negligible effects on the correction of the second-order statistics of the wind velocity. In contrast, its cutoff frequency plays a significant role in the spectral correction encompassing the smoothing effects connected with the LiDAR gate length.more » « less
-
Abstract Flow modifications induced by wind turbine rotors on the incoming atmospheric boundary layer (ABL), such as blockage and speedups, can be important factors affecting the power performance and annual energy production (AEP) of a wind farm. Further, these rotorâinduced effects on the incoming ABL can vary significantly with the characteristics of the incoming wind, such as wind shear, veer, and turbulence intensity, and turbine operative conditions. To better characterize the complex flow physics underpinning the interaction between turbine rotors and the ABL, a field campaign was performed by deploying profiling wind LiDARs both before and after the construction of an onshore wind turbine array. Considering that the magnitude of these rotorâinduced flow modifications represents a small percentage of the incoming wind speed ( ), high accuracy needs to be achieved for the analysis of the experimental data and generation of flow predictions. Further, flow distortions induced by the site topography and effects of the local climatology need to be quantified and differentiated from those induced by wind turbine rotors. To this aim, a suite of statistical and machine learning models, such as kâmeans cluster analysis coupled with random forest predictions, are used to quantify and predict flow modifications for different wind and atmospheric conditions. The experimental results show that wind velocity reductions of up to 3% can be observed at an upstream distance of 1.5 rotor diameter from the leading wind turbine rotor, with more significant effects occurring for larger positive wind shear. For more complex wind conditions, such as negative shear and lowâlevel jet, the rotor induction becomes highly complex entailing either velocity reductions (down to 9%) below hub height and velocity increases (up to 3%) above hub height. The effects of the rotor induction on the incoming wind velocity field seem to be already roughly negligible at an upstream distance of three rotor diameters. The results from this field experiment will inform models to simulate windâturbine and windâfarm operations with improved accuracy for flow predictions in the proximity of the rotor area, which will be instrumental for more accurate quantification of wind farm blockage and relative effects on AEP.more » « less
An official website of the United States government
